3.3.63 \(\int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a-a \cos (c+d x)} \, dx\) [263]

Optimal. Leaf size=129 \[ -\frac {3 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{4 d}+\frac {3 a \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a-a \cos (c+d x)}}-\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a-a \cos (c+d x)}} \]

[Out]

-3/4*arctanh(sin(d*x+c)*a^(1/2)/cos(d*x+c)^(1/2)/(a-a*cos(d*x+c))^(1/2))*a^(1/2)/d-1/2*a*cos(d*x+c)^(3/2)*sin(
d*x+c)/d/(a-a*cos(d*x+c))^(1/2)+3/4*a*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a-a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {2849, 2854, 213} \begin {gather*} -\frac {a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a-a \cos (c+d x)}}+\frac {3 a \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a-a \cos (c+d x)}}-\frac {3 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*Sqrt[a - a*Cos[c + d*x]],x]

[Out]

(-3*Sqrt[a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]])])/(4*d) + (3*a*Sqrt[C
os[c + d*x]]*Sin[c + d*x])/(4*d*Sqrt[a - a*Cos[c + d*x]]) - (a*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqrt[a -
a*Cos[c + d*x]])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2849

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[2*n*((b*c + a*d)
/(b*(2*n + 1))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2854

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*(b/f), Subst[Int[1/(b + d*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a-a \cos (c+d x)} \, dx &=-\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a-a \cos (c+d x)}}-\frac {3}{4} \int \sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)} \, dx\\ &=\frac {3 a \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a-a \cos (c+d x)}}-\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a-a \cos (c+d x)}}+\frac {3}{8} \int \frac {\sqrt {a-a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {3 a \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a-a \cos (c+d x)}}-\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a-a \cos (c+d x)}}+\frac {(3 a) \text {Subst}\left (\int \frac {1}{-a+x^2} \, dx,x,\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{4 d}\\ &=-\frac {3 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)}}\right )}{4 d}+\frac {3 a \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a-a \cos (c+d x)}}-\frac {a \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a-a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.36, size = 289, normalized size = 2.24 \begin {gather*} -\frac {\sqrt {\cos (c+d x)} \sqrt {a-a \cos (c+d x)} \left (3 \tanh ^{-1}\left (\frac {e^{i d x}}{\sqrt {\cos (c)-i \sin (c)} \sqrt {\cos (c)+e^{2 i d x} (\cos (c)+i \sin (c))-i \sin (c)}}\right ) \left (i+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c)-i \sin (c)}+3 \tanh ^{-1}\left (\frac {\sqrt {\cos (c)+e^{2 i d x} (\cos (c)+i \sin (c))-i \sin (c)}}{\sqrt {\cos (c)-i \sin (c)}}\right ) \left (i+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c)-i \sin (c)}+2 \sqrt {2} \left (-2 \cos \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {3}{2} (c+d x)\right )\right ) \csc \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x) (\cos (d x)+i \sin (d x))}\right )}{8 d \sqrt {\left (1+e^{2 i d x}\right ) \cos (c)+i \left (-1+e^{2 i d x}\right ) \sin (c)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)*Sqrt[a - a*Cos[c + d*x]],x]

[Out]

-1/8*(Sqrt[Cos[c + d*x]]*Sqrt[a - a*Cos[c + d*x]]*(3*ArcTanh[E^(I*d*x)/(Sqrt[Cos[c] - I*Sin[c]]*Sqrt[Cos[c] +
E^((2*I)*d*x)*(Cos[c] + I*Sin[c]) - I*Sin[c]])]*(I + Cot[(c + d*x)/2])*Sqrt[Cos[c] - I*Sin[c]] + 3*ArcTanh[Sqr
t[Cos[c] + E^((2*I)*d*x)*(Cos[c] + I*Sin[c]) - I*Sin[c]]/Sqrt[Cos[c] - I*Sin[c]]]*(I + Cot[(c + d*x)/2])*Sqrt[
Cos[c] - I*Sin[c]] + 2*Sqrt[2]*(-2*Cos[(c + d*x)/2] + Cos[(3*(c + d*x))/2])*Csc[(c + d*x)/2]*Sqrt[Cos[c + d*x]
*(Cos[d*x] + I*Sin[d*x])]))/(d*Sqrt[(1 + E^((2*I)*d*x))*Cos[c] + I*(-1 + E^((2*I)*d*x))*Sin[c]])

________________________________________________________________________________________

Maple [A]
time = 0.89, size = 165, normalized size = 1.28

method result size
default \(\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \arctanh \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {-2 \left (-1+\cos \left (d x +c \right )\right ) a}\, \left (\cos ^{\frac {3}{2}}\left (d x +c \right )\right ) \sqrt {2}}{8 d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{3}}\) \(165\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a-a*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d*(-1+cos(d*x+c))*(2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(
d*x+c)-3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*arctanh((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))*(-2*(-1+cos(d*x+c))*a
)^(1/2)*cos(d*x+c)^(3/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/sin(d*x+c)^3*2^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 1063 vs. \(2 (107) = 214\).
time = 0.63, size = 1063, normalized size = 8.24 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a-a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) - sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) -
 2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c))) + cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(-a)
+ 3*sqrt(-a)*(arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*
d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c)))) - 1) + arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - arctan2((cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1)) - 1)))/d

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 155, normalized size = 1.20 \begin {gather*} \frac {3 \, \sqrt {a} \log \left (\frac {4 \, \sqrt {-a \cos \left (d x + c\right ) + a} {\left (2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \sqrt {\cos \left (d x + c\right )} - {\left (8 \, a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right )}{\sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 4 \, \sqrt {-a \cos \left (d x + c\right ) + a} {\left (2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 3\right )} \sqrt {\cos \left (d x + c\right )}}{16 \, d \sin \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a-a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/16*(3*sqrt(a)*log((4*sqrt(-a*cos(d*x + c) + a)*(2*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*sqrt(cos(d*x
+ c)) - (8*a*cos(d*x + c)^2 + 8*a*cos(d*x + c) + a)*sin(d*x + c))/sin(d*x + c))*sin(d*x + c) - 4*sqrt(-a*cos(d
*x + c) + a)*(2*cos(d*x + c)^2 - cos(d*x + c) - 3)*sqrt(cos(d*x + c)))/(d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {- a \left (\cos {\left (c + d x \right )} - 1\right )} \cos ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a-a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(-a*(cos(c + d*x) - 1))*cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a-a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a*cos(d*x + c) + a)*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a-a\,\cos \left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(a - a*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(3/2)*(a - a*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________